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Improved LTE like initial uplink

synchronization via reduced problem dimension
Md Mashud Hyder and Kaushik Mahata

Abstract

Initial uplink synchronization (IUS) is a random access process in LTE that enables the eNodeB to

detect, and uplink synchronize new user equipment. In future networks with huge number of devices, the

number of simultaneous IUS users will increase significantly. In addition, it is desirable to serve users

moving at high speed. We exploit the structure of the physical random access channel (PRACH) in LTE to

reduce the dimension of the underlying data model. This reduction gives a very compact representation of

channel impulse response (CIR). We utilize this representation to develop an efficient algorithm which

can work in presence of large multiple access interference (MAI) and high carrier frequency offsets

(CFO). When compared with the state of the art methods. the proposed method is capable of detecting

a significantly higher number of IUS users and can allow high values of CFO. In addition, it produces

very reliable estimates of both CIR and CFO of the detected users.

Keywords: Random Access, initial uplink synchronization, subspace dimension reduction.

I. INTRODUCTION

A. Background

LTE uses single carrier frequency-division multiple access (SC-FDMA) in uplink. This requires the

uplink signals from different user equipments (UEs) to be aligned in time, and have nearly the same power

level when they arrive at the eNodeB. This is possible only if each UE delays and amplifies its uplink

transmission appropriately to compensate for the delay and the gain associated with its channel impulse

response (CIR). For a new UE the delay and gain parameters are unknown. Hence LTE requires every

new UE to undergo a network entry procedure called the Initial Uplink Synchronization (IUS). Each UE
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wanting to enter the network uses some downlink control signals to downlink synchronizes itself with

eNodeB by estimating the relevant frequency. An UE uses its estimates of downlink channel parameters

during IUS. IUS is a contension based random access (RA) process. The LTE standard specifies certain

special time slots when UEs are given the so-called “RA opportunity”. Furthermore, LTE allocates a

set of carrier frequencies called physical random access channel (PRACH) for RA data transmission. A

downlink synchronized UE wanting to enter the network, also refered to as a Random Access Terminal

(RT), must select an RA opportnity to transmit a code over the PRACH. The code must be chosen

at random from a pre-specified codebook. Note that at a particulat RA opportunity, multiple RTs can

transmit signals. The signals transmitted by all RTs participating in an RA opportunity are superimposed

on each other in the channel, and the resulting signal is received by the eNodeB. The eNodeB uses

this received signal to detect the transmitted codes, and for each detected code the eNodeB estimates the

corresponding CIR, propagation delay and the carrier frequency offset (CFO) [1]–[3]. The detected codes

and the corresponding CIR power, propagation delay and CFO estimates are subsequently broadcast by

the eNodeB in a response message. Now the UEs can use this information to properly delay their uplink

transmission and select appropriate transmit power levels. Note that if multiple RTs transmit same code

then collision occurred in the transmission and the IUS process of associated RTs become unsuccessful.

Similar random access processes has also been adopted in WiMAX (IEEE 802.16 wireless metropolitan

area network).

Multiuser code detection and their corresponding CIR, propagation delay and CFO estimation are the

main task of IUS. Among the state of the art methods, [4] utilizes a set of generalized chirp-like polyphase

sequences to get sharp time delay estimates. The work in [5] demonstrates that the frequency-domain

correlation approach outperforms its time domain counterpart for IUS parameter estimation. The method

proposed in [6] allocates a small number of subcarriers to each ranging opportunity so that most of the

RTs are expected to transmit on disjoint sets of subcarriers with minimum level of MAI. However, the

reduction of the number of effective subcarrier for each user results in the degradation of timing estimation

performance [1]. A similar approach has been proposed in [7] for channel synchronization. This method

assumes that the uplink signals are transmitted over disjoint subcarriers, and the receivers use filter

banks to separate multiuser codes. An iterative parallel interference cancellation (IPIC)-based multiuser

detection and estimation algorithm is proposed in [8] for the coordinated multipoint (CoMP) transmission

in LTE system. The authors also proposed a RA subchannel allocation scheme which can suppress

mutual interference between coordinated users and noncoordinated users. The work in [9] improves the

IUS performance by dividing the ranging signals into several groups with each group being transmitted

over exclusively assigned subcarriers. The iterative maximum likelihood algorithm in [10] applied an
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expectation-maximization (EM) type technique to mitigate MAI in the user detection process. Successive

interference cancellation (SIC) algorithms [1]–[3] are very popular in IUS for their low complexity and

efficient user detection capability. In its most basic form, the algorithm works in an iterative fashion

where the strongest path of each active RT is detected and is removed from the received signal and the

resulting signal is used in succeeding iterations. In [11] a sparse recovery framework is proposed. The

theory is used in [12] to optimally select the Zadoff-Chu (ZC) codes in the RA codebook, and in [13] for

a fast SIC algorithm. The non-linear distortion of transmission signal over multipath fading channel in

LTE system is analyzed in [14] which helps to understand the inter-distortion interference (IDI) between

multiple users and improve IUS performance. Multi-user timining offset estimation in a random access

environment for massive multiple-input multiple-output (MIMO) systems is proposed in [15]. The spatial

degrees of freedom provided by massive MIMO systems are used together with the inherent different time

instants of reception of UEs’ signals to resolve inter-user collisions. Finally a subspace based algorithm

is applied to estimate timing offset of different users.

In the LTE context, there are two main shortcomings of the approaches outlined above [1]–[3], [11],

[12]. Firstly, when the channel power of the UEs vary over a wide range (due to different locations of

users in a wireless cell), then the UEs with small channel power are very hard to detect. Secondly, the

IUS algorithms [1]–[3], [6], [7], [16] assume CFO is negligible. Indeed, in 2.5 GHz LTE with format-0

PRACH [17], (see also Table-I), the CFO due to errors in the frequency synthesizer is typically less

than 400 Hz, which is about 30% of the PRACH subcarrier spacing. However it is increasingly desirable

to be able to synchorize UEs moving at high speed. Then, due to Doppler effect, the CFO would be

significantly higher. The recent RA codebook design in [12] attempts to make the codebook robust to

the adverse effects of CFO. However, the hybrid algorithm of [18] is the only method for joint CFO

estimation and user detection. Unfortunately, its user detection performance is very sensitive to channel

SNR variation (see [13, Figure 2]).

The future networks are expected to connect huge number of devices [19]. This will increase the

number of simultaneous IUS requests by a considerable proportion. Now the RA process assumes that

the number of codes G in the RA codebook is much larger than the number of simultaneous requests. The

probability that a particular code is transmitted by an RT is 1/G. If there are n RTs, then the probability

that a code is transmitted by no more than one RT is (1−G−1)n+nG−1(1−G−1)n−1. This probability

of a collision-free IUS should be as close to 1 as possible. For LTE, G = 64. Hence with n = 5 the

probability of collision free IUS is 0.85. To serve a larger number of RTs with the same probability of

collision-free IUS we must increase G. For instance, to support n = 10 with the same confidence we

need G ≥ 150. However, an increase in G does not only increase the complexity of the IUS methods,
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but also severely affect their detection-estimation accuracy. Therefore it is of considerable interest to seek

alternative solutions capable of delivering acceptable detection-estimation performance for a significantly

larger codebook size G at some moderate computational complexity. At the same time it is desirable to

be able to serve UEs moving at a high speed, and cater for UEs with widely varying channel power.

B. Contributions

In this paper we aim to address the above challenges by exploiting certain mathematical property of

LTE-PRACH and its impact on the signal model. We show that the underlying dimension of the IUS

problem is significantly smaller than what was thought before. To understand this in a simple way, first

consider the scenario where the RTs have negligible CFOs. Then the previous research has shown that

the signal y received by the eNodeB in a particular RA opportunity can be expressed as, see e.g. [12],

y =

G∑

`=1

Γ`h̄` + e, (1)

where G is the number of codes in the codebook, and e is the additive measurement noise vector. The

vector h̄` depends on the CIR of the RT transmitting the ` -th code in the codebook. It’s length N1

depends on the cell radius and the maximum CIR length in the system (see discussion around (8) for

detail). Note that ‖h̄`‖2 = 0 if the `-th code does not transmitted by any RT. The signal y is of dimension

M , where M is the number of adjacent subcarriers in the PRACH. The matrices {Γ`}G`=1 are known. In

particular, we can calculate Γ` if we know the the ` th code in the codebook. Therefore, the IUS problem

involves solving the unknown vector

ĥ = [ h̄
ᵀ
1 h̄

ᵀ
2 · · · h̄ᵀ

G ]ᵀ.

of dimension N1G from M noisy linear measurements, where (.)ᵀ denotes transpose. In a practical LTE

system with a cell radius 2.1 km we have N1 = 530. In addition, M = 839 and G = 64. This means we

have N1 ×G = 33920 unknowns in (1), which needs to be solved from 839 noisy measurements. This

is an ill posed task in absence of any further information.

To handle the above problem, the state-of-the-art methods exploit the fact that in reality, the number n

of active RTs is actually a lot smaller than G. Hence in reality, the majority of {h̄`}G`=1 are zero vectors.

The number of non-zero entries in ĥ is a bit less than nN1. In the following the non-zero entries in ĥ

will be denoted by K. However, we don’t know those few values of ` for which h̄` 6= 0. This makes

the detection-estimation problem a sparse signal recovery problem. Indeed, some recent algorithms for

solving the IUS problem use the principles of sparse recovery. The SIC algorithms in [1]–[3], [13] can

be viewed as special variants of the class of matching persuit algorithms [20]. The algorithm in [11] uses

a mix of `0 and `1 minimization strategy.
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How well a sparse signal recovery problem can be solved, depends on three integers: i) The number

of unknowns, which is N1G in above; ii) The number of measurements, which is M in our case;

and iii) The number K of non-zero components in the unknown vector ĥ. In above K is proportional

to the number n of active RTs. The theory of sparse signal recovery suggests that for a given M , and

the number of unknowns, we will achieve better detection-estimation result if the value of K is reduced.

This explains why the existing algorithms produce good results for smaller values of n. If n increases

then K increases proportionally, and eventually ĥ is no longer sparse enough for the estimation methods

to succeed. In such cases one may expect some improvement in the results if the number of unknowns

is somehow reduced. In this paper we describe a way to accomplish exactly that. We propose a new

parameterization such that we can work with a significantly smaller number of unknowns, and yet, the

unknown vector retains the same level of sparsity, i.e. the ratio of the number of non-zero entries in the

unknown vector to the dimension of the unknown vector remains almost the same.

Recall that N1 is the number of columns in Γ`. Our work is founded on the observation that the

dimension of the column space of Γ` is much much smaller than N1. This is true for any `. In particular

we show in Appendix that the dimension of the columns space of Γ` is dMN1/Ne, where N is the

number of OFDM subcarriers used in the system. In an LTE system employing M = 839 one has

N = 24576. For a cell of 2.1 km radius N1 = 530. Hence the matrix Γ` is of size 839 × 530. But its

column space is of dimension d839×530
24576 e = 19 only.

Consider an M × dMN1/Ne matrix U` be such that its columns form an orthogonal basis of the

column space of Γ`. We can calculate such an U` in many ways like the QR factorization of Γ`. Since

the columns of U` are mutually orthogonal, for any given h̄`, there is a unique dMN1/Ne dimensional

vector h` such that

Γ`h̄` = U`h`.

In addition h` = 0 whenever h̄` = 0. Since h̄` 6= 0 for only a few values of ` corresponding to the

codes transmitted by the active RTs, we conclude that h̄` 6= 0 for those few values of ` corresponding to

the transmitted codes. With these observations, we can now cast the detection-estimation problem under

consideration in terms of {h`}G`=1 where (1) is rewritten as

y =

G∑

`=1

U`h` + e. (2)

Now our objective is to find {h`}G`=1. We can also account for the sparsity, by devising an estimation

strategy that attempts to maximize the number of zero vectors in the solution set {h`}G`=1. In the specific

LTE scenario discussed before, M = 839 and total the number of unknowns is 19×G = 19×64 = 1216.

According to the theory of sparse signal recovery, this problem is a lot easier than the original problem.
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We shall demonstrate that the above modified formulation has several additional advantages. The

dramatic reduction in the number of unknowns per code makes way for larger codebooks. For a fixed M

we can now increase G and still the total number of unknowns can be kept within a manageable limit.

That in turn allows more active RTs, and still avoid collisions during the random access process. In the

above discussion we have assumed that the CFO of an active RT is negligible. However, we shall see

later that the reduced number of unknowns in (2) allows us to account for the CFOs, and solve them

along with {h`}G`=1 in a rather reliable manner. The reduced problem dimension brings computational

advantages as well. We demonstrate these advantages by proposing an SIC type detection algorithm. The

detection step yields estimates of {h`}G`=1. Subsequently, we use these to estimate the CIR and CFO.

The underlying algorithm employs the maximum likelihood principle, and thus, is very accurate. The

utility of the proposed approach is demonstrated via simulation study.

II. SIGNAL MODEL

In this section we briefly review the signal model for the IUS problem in an LTE like system. The

description below closely follows the derivation in [12]. LTE system uses orthogonal frequency division

multiple access (OFDMA). As mentioned before, we use N to denote the number of subcarriers. Each

subcarrier carries one discrete-time data sample. Thus, an OFDM frame carries N discrete-time data

samples. Out of the N subcarriers, a set of M adjacent subcarriers are allocated for the PRACH.

Recall that the RA codebook consists of G codes. We denote them by c1, c2, . . . , cG. Each of these

codes is an M dimensional vector, derived by computing an M point discrete Fourier transform of a

Zodoff-Chu sequence, see [17] for details. See [12] for guidelines to choose better codes. During an RA

opportunity an RT, say T, calculates these N samples by calculating the N point inverse discrete Fourier

transform of the chosen code c`. In particular, the q th data sample s(q) is given by

s(q) =
1√
N

M∑

m=1

c`(m) exp{i2πjmq/N}, q = I, (3)

where c`(m) denotes the m th component of c`. In addition, jm is the index of m-th PRACH subcarrier,

and we denote I := {0, 1, . . . , N − 1}. Apart from the data-samples an OFDM frame contains its usual

cyclic prefix. In the sequel Np denotes the length of the cyclic prefix. In addition, the frame transmitted

during an RA opportunity contains Ng additional guard samples. Together the data samples, the cyclic

prefix and the guard samples are concatenated to generate Np+N+Ng channel symbols. We denote these

channel symbols by w(k), k = −Np, . . . ,−1, 0, 1, . . . , N + Ng − 1. In particular, these are constructed

from s(q), q ∈ I as

w(k) =





s(k mod N), −Np ≤ k ≤ N − 1,

0, N ≤ k ≤ N +Ng − 1,
(4)
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Note that (k mod M) := k −M · b`/Mc, with brc denoting the largest integer less than or equal to r.

Suppose h(p), p ∈ {0, 2, · · ·P−1} are the uplink channel impulse response (CIP) coefficients between

the transmitter T and eNodeB where P is the channel length. Discarding the cyclic prefix and the guard

symbols, let {v(k)}N−1
k=0 be the contribution of T in the symbols received by the eNodeB during the

RA opportunity. These are delayed and convoluted version of the transmitted symbols. For k ∈ I, the

received signal at eNodeB be

ṽ(k) = ei2πkε`/N
d+P−1∑

p=d

h(p− d) w(k − p),

= ei2πkε`/N
d+P−1∑

p=d

h(p− d) s{(k − p) mod N}, (5)

where the propagation delay d depends on the distance between T and eNodeB, and ε` is the CFO

(normalized by subcarrier spacing).

The eNodeB computes the N point DFT of the v of the vector ṽ := [ ṽ(0) ṽ(1) · · · ṽ(N − 1) ]ᵀ,

where (.)ᵀ denotes transpose. Then it can be shown that (see [12, eq. (15)])

v = Q`diag(c`)ΘF




0d×1

h0

h1

...

hP−1

0(N−P−d)×1




(6)

Q` = IM + Hε` +O(ε2` ),

where H(k,l) =





iπ(1− 1/N), k = l,

− πeiπ(k−l)/N

N sin(π(k−l)/N) , k 6= l.

(7)

Here F is the N ×N DFT matrix:

[F]k,m = exp{−i2π(k − 1)(m− 1)/N}/
√
N,

Θ is an M ×N row selector matrix such that m-th row of Θ is the jm-th row of the N ×N identity

matrix, IM is M ×M identity matrix, 01×d is a d-vector with all zeros.

Let Pmax be the maximum value of P , and D be the maximum value of d. Denote N1 = Pmax +D.

Then, d+ P ≤ N1. Thus, all rows of

[ 01×d h0 h1 · · · hP−1 01×(N−P−d) ]ᵀ (8)
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with indices larger than N1 are zeros. Hence we can write (6) as

v = Q`diag(c`)ΘF(:,1:N1)s(h, d), (9)

where we use the Matlab notation F(:,1:N1) to denote the sub-matrix of F consisting of its first N1

columns, we define the N1 dimensional vector valued function

s(h, d) = [ 01×d hᵀ 01×(N1−P−d) ]ᵀ (10)

of a P ≤ Pmax dimensional vector h = [ h0 h1 · · · hP−1 ]ᵀ and an integer d ≤ Dmax. In a practical

system both Pmax and D are known. Therefore, we can estimate N1 [1], [3].

III. A COMPACT BLOCK SPARSE SIGNAL MODEL

In the Appendix we show that ΘF(:,1:N1) has only τ = dMN1/Ne significant singular values, and

the remaining singular values are very close to zero. This result holds when N � M , which is true

for the practical LTE systems. Hence we can very accurately approximate ΘF(:,1:N1) = UΣV∗. U is

an M × τ matrix with its columns being the τ mutually orthogonal left singular vectors of ΘF(:,1:N1)

corresponding to its τ significant singular values. Similarly V is an N1× τ matrix with the τ significant

right singular vectors of ΘF(:,1:N1) as its columns and V∗ denotes complex conjugate transpose. Σ is

the τ × τ diagonal matrix of the significant singular values.

Now consider a IUS opportunity where several RTs transmit simultaneously. Let h` be the CIR vector

of the RT sending code ĉ`, and d` be its propagation delay. Then the received data y at eNodeB is

obtained by adding the contributions of the form (9) from all the RTs:

y =

G∑

`=1

Q`diag(c`)ΘF(:,1:N1)s(h`, d`) + e, (11)

where e is the additive measurement noise. In practice, the number of active RTs is much smaller than

G. If ĉ` is not sent for a particular ` then s(h`, d`) = 0. Define

ξ` := ΣV∗s(h`, d`), (12)

A` := diag(c`)U, B` := HA`. (13)

A := [ A1 A2 · · ·AG ], B := [ B1 B2 · · ·BG ] (14)

Now substitute ΘF(:,1:N1) = UΣV∗ in (11) and using the expression of Q` from (7), we get

y =

G∑

`=1

A`ξ` +

G∑

`=1

ε`B`ξ` + e. (15)

Now given y, the IUS problem requires to estimate:
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1) The indices of all active code, i.e., {` ∈ {1, 2, · · ·G} : ‖ξ`‖2 6= 0}.
2) For each active code index `, estimate the associated channel power ‖ξ`‖2, transmission delay d`

and CFO ε`.

In LTE system, each c` is obtained by computing the FFT of some Zodoff-Chu codes [17]. As a

consequence, it turns out that each element of the vector c` is of unit modulus [12]. As a result, the

matrix diag(c`) becomes orthogonal. Therefore

A∗`A` = U∗diag(c`)
∗diag(c`)U = Iτ (16)

for all `.

We note in passing an interesting implication of the model (15) when the LTE cell radious is amall

and CFO is negligible [12], [16], [17], i.e., ε` ≈ 0 for all `. Consequently (15) reduces to

y =

G∑

`=1

A`ξ` + e.

If the cell radius is also small, then often [ A1 · · · AG ] has more rows than columns. In that case

we estimate [ ξᵀ1 · · · ξᵀG ]ᵀ using linear least squares as [ A1 · · · AG ]†y, where (.)† denotes the

Moore-Penrose pseudo-inverse operator. This estimator is can be shown to be the minimum mean square

error (MMSE) estimator [21] provided that the elements of e are independent and identically distibuted.

We can detect users by applying a simple hypothesis test on the components of [ A1 · · · AG ]†y [21].

IV. SIC TYPE CODE DETECTION METHOD

If the cell radius is not small, then [ A1 · · · AG ] has more columns than rows. In that case the

above mentioned linear least squares approach is not applicable. Besides, it is desirable to be able to

accommodate non-trivial CFO values in the system. In that case we must work with the complete model

(15), and we are no longer able to apply the linear least squares method. For this reason we propose a

code detection method for the model (15). It is an enhanced SIC [22] method. Let the set of all active

RA code indices be

S = {` ∈ {1, 2, · · ·G} : ‖ξ`‖2 6= 0}, (17)

Given the data y and an index ` ∈ {1, 2, . . . , G}, consider two hypotheses:

H0 : ` /∈ S; H1 : ` ∈ S. (18)

To decide in favor of one, we perform a generalized likelihood ratio test (GLRT) [23], [24]. To compute

the associated test statistic we need the probability density function of y under each hypothesis. This

is used to compute the maximum-likelihood (ML) estimates of unknown parameters in the probability
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density function. Finally, the GLRT statistic is formed by plugging in the estimated values of the model

parameters in the expressions of the probability density functions. In practice, the probability density

functions are not given, but we need to device some realistic probability models. These models must be

realistic in two ways. Firstly, ML estimation of the underlying model parameters must be a well posed

problem. Secondly, we should be able to validate the model for the applications under consideration.

Under H0 we model y as a zero mean complex Gaussian random vector with a covariance matrix

σ2
0IM . The ML estimate of σ2

0 is [25]

σ̂2
0 = y∗y/M. (19)

Under hypothesis H1, we assume that y to be complex Gaussian with mean A`ξ` and covariance

matrix σ2
1IM . By (16) A∗`A` = Iτ , and then the ML estimates of ξ` and σ2

1 are given by [25]

ξ́` = A∗`y, σ̂2
1 = y∗(IM −A`A

∗
` )y/M. (20)

The Gaussian density function with mean µ and covariance matrix σ2IM evaluated at y is given by

N (y,µ, σ2) = (2πσ2)−M/2 exp{−||y − µ||22/(2σ2)}.

Using (19) and (20) in above the GLRT statistic for our hypothesis testing problem is given by

L(y) :=
N (y, 0, σ̂2

0)

N (y, h́`, σ̂
2
1)

=

(
1− y

∗A`A
∗
`y

y∗y

)M/2

. (21)

Instead of working directly with the GLRT statistic (21) it is more convenient to work with a monotonic

function thereof:

L1(y) =
1

1− {L(y)}2/M − 1 =
y∗Ă`Ă

∗
`y

y∗A`A
∗
`y

(22)

where Ă` is a M × (M − τ) matrix with mutually orthogonal columns such that Ă∗`A` = 0. While

deriving (22) we use A`A
∗
` + Ă`Ă

∗
` = IM . This also implies that under H0 the covariance matrix of the

complex Gaussian vector y∗[A` Ă` ] is σ2
0IM ; and hence L1(y) is central F distributed with 2(M − τ)

and 2τ degrees of freedom. Hence we can apply an F -test on L1(y). Denote by F (·) the central F

distribution function with 2(M − τ) and 2τ degrees of freedom. For a target false alarm probability qfa,

we decide H0 if L1(y) > κ = F−1(1− qfa). Otherwise we decide H1.

We embed the above hypothesis testing approach in an SIC framework, where we successively remove

the contributions of the detected codes from observed data to overcome the interference of the stronger

sources on the others. We call it block successive interference cancellation (Blk-SIC) algorithm. The idea

is outlined below:

1) Set p = 1 and r1 = y. Construct an empty set T = ∅, an empty matrix Ψ0. Set κ = F−1(1− qfa).
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2) Block index detection:

I = {` ∈ {1, 2, · · ·G}\T : L1(rp) ≤ κ}

3) If I = ∅ then exit.

4) Set T = T ∪ I.

5) Update Ψp =
[
Ψp−1 AI(1) · · ·AI(L) BI(1) · · ·BI(L)

]
, where L is the cardinality of the set I.

6) Project y onto the null space of Ψ∗p

rp+1 = Cpy (23)

where Cp = IM −Ψp(Ψ
∗
pΨp)

−1Ψ∗p.

7) p = p+ 1

8) Goto Step 2.

9) Output: set of detected codes T.

Blk-SIC initializes the set of all detected codes T = ∅ and the residual as r1 = y. At p-th iteration,

Blk-SIC treats the residual rp as the measured data, and computes L1(rp) for every block A`, ` ∈
{1, 2, · · ·G}\T. It then selects the block indices I based on a threshold value κ. Once the block indices

are chosen, the corresponding block matrices are concatenated with the matrix Ψp. Step-6 updates the

residual rp+1 by projecting y onto the null space of Ψ∗p.

We neglect the effect of B` while calculating GLRT statistics in Step-2. However, while constructing

Ψp in Step-6, we incorporate B` also. To explain the reason recall (15). The vector y is constructed by

A` multiplied with ξ` and B` multiplied with ε`ξ`. Therefore, if ` is an active code index then we know

that both ‖ξ`‖2 and ‖ε`ξ`‖2 are nonzero. Hence, we concatenate both A` and B` in Ψp. However, the

energy of ε is generally very low (ε ≤ 0.3). Therefore, if we select codes based on GLRT statistics for

B` then the false alarm rate tends to increase.

A. Estimation of {ξ`, ε`}`∈S

Assuming S is known from the Blk-SIC algorithm described in the the previous section, we can rewrite

(15) as

y =
∑

`∈S
A`ξ` +

∑

`∈S
B`ε`ξ` + e (24)

where A`,B`, ` ∈ S are known. Let the k th index in S be S(k). We propose to estimate {ξ`, ε`}`∈S
by solving the nonlinear least squares problem

minimize
{ε`,ξ`}`∈S

∥∥∥∥∥y −
∑

`∈S
A`ξ` −

∑

`∈S
ε`B`ξ`

∥∥∥∥∥

2

. (25)
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Note that (25) is motivated by the Gaussian maximum likelihood approach. However, this is a non-convex

problem, and thus does not admit any known polynomial time algorithm for solution. Nevertheless, (25)

is a bilinear least squares problem. We shall exploit this structure to device a two step algorithm. In

Section IV-A1 we present a linear least squares and total least squares based non-iterative algorithm. In

addition, we also have a more accurate, iterative alternating decent method. One may use the LS-TLS

based estimates as initial estimates to kick start the alternating decent method.

1) Blk-SIC-TLS: We start by relaxing (25) where we work with a set of auxiliary unknowns

ζ` = ξ`ε`, ` ∈ S. (26)

Subsequently, we obtain estimates of {ζ`, ξ`}`∈S by solving linear least squares problem

minimize
{ζ`,β`}`∈S

∥∥∥∥∥y −
∑

`∈S
A`ξ` −

∑

`∈S
B`ζ`

∥∥∥∥∥

2

, (27)

which is a relaxed version of (25). The analytical solution of the linear least squares problem is known,

and we can readily compute the solution. We denote the associated estimates be {ξ̂`, ζ̂`}`∈S .

Now we use the fact that ε` is real-valued, and in addition, ζ` = ξ`ε`. Hence the real valued matrix


 Re(ξ`) Re(ζ`)

Im(ξ`) Im(ζ`)


 =


 Re(ξ`)

Im(ξ`)


 [ 1 ε` ]

is a rank-1 matrix. Using this information we use a total least squares method to find improved estimates

of {ξ`}`∈S . From these we shall derive estimates of {ε`}`∈S . For each ` ∈ S we form the 2τ × 2

real-valued matrices

M̂` =


 Re(ξ̂`) Re(ζ̂`)

Im(ξ̂`) Im(ζ̂`)


 , ` ∈ S.

By the total least squares principle, the best rank-1 approximation of M̂` is given by


 u1

u2


σ


 w1

w2



ᵀ

=


 u1

u2


σw1

[
1

w2

w1

]
,

where σ is the largest singular value of M̂, [ uᵀ
1 uᵀ

1 ]ᵀ is the corresponding left singular vector, and

[ w1 w2 ]ᵀ is the corresponding right singular vector. From here we get a refined estimates of ξ` and ε`:

ξ̌` = (u1 + iu2)σw1, ε̌` =
w2

w1
, ` ∈ S.
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2) Blk-SIC-AD: Next we apply an alternating descent (AD) algorithm to solve (25). In this algorithm

the Blk-SIC-TLS estimates could be used as initial guess. Recall that the number of active users is n.

Hence the cardinality of S is n. We denote the ` th index in S by S(`). Let us define

ε = [ εS(1) εS(2) · · · εS(n) ]ᵀ,

ξ = [ ξᵀS(1) ξᵀS(2) · · · ξ
ᵀ
S(n) ]ᵀ,

W(ε) = [ AS(1) + εS(1)BS(1) · · · AS(n) + εS(n)BS(n) ],

Z(ξ) = [ BS(1)ξS(1) BS(2)ξS(2) · · · BS(n)ξS(n) ].

For a given ε the cost function in (25) is minimized with respect to ξ by taking ξ = W(ε̄)†y, where

W(ε̄)† is the pseudo-inverse of W(ε̄). Similarly, for a given ξ the cost function in (25) is minimized

with respect to ε by taking

ε =


 Re{Z(ξ)}

Im{Z(ξ)}



† 
 Re

{
y −∑n

k=1 AS(k)ξS(k)

}

Im
{
y −∑n

k=1 AS(k)ξS(k)

}

 (28)

The alternating descent algorithm [26]–[28] solves (25) by iterating the above steps:

1) Set ε = 0 (or initialize ε using the Blk-SIC-TLS estimates)

2) Compute ξ = W(ε̄)†y

3) Update ε as in (28)

4) Exit if the change in the update ε is below a predefined threshold; otherwise goto Step 2.

The alternating decent algorithm always converges monotonically to a stationary point of the cost function

in (25) [27, Proposition-3]. We shall use {̊ξ`, ε̊`}`∈S to denote the estimates obtained using the alternating

decent algorithm.

B. Covariance matrix of {̊ξ`, ε̊`}`∈S

Let us denote

G = [P1 · · ·PK B̃S(1)ξ̃S(1) · · · B̃S(K)ξ̃S(K)],

where, P` = ÃS(`) + B̃S(`)εS(`),

Ã` =


 Re(A`) −Im(A`)

Im(A`) Re(A`)


 , B̃` =


 Re(B`) −Im(B`)

Im(B`) Re(B`)


 ,

ξ̃` = [Re(ξ`)
ᵀ Im(ξ`)

ᵀ]ᵀ

If e is complex Gaussian with covariance matrix σ2I, then using the results available in [29] it can be

verified that the large sample covariance matrix of [ ξ̃
ᵀ
S(1) · · · ξ̃

ᵀ
S(n) ε̄ᵀ]ᵀ is σ2(GᵀG)−1. We need
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to know the true values of {ξ`, ε`}`∈S to compute this covariance matrix. In practice, the true values

are unknown. Hence it is common to use the estimates {̊ξ`, ε̊`}`∈S obtained from the alternating decent

algorithm in lieu of the true values. The covariance computation requires σ2 as well, and we can estimate

that from the data. Let us define

D = [ AS1 · · · ASn BS1 · · · BSn ].

In (24) notice that y − e resides in the column-space of D. Hence it follows that

y∗{IM −D(D∗D)−1D∗}y = e∗{IM −D(D∗D)−1D∗}e = Tr{[IM −D(D∗D)−1D∗]ee∗}.

Recall that e is zero mean complex random vector with covariance matrix σ2IM . Hence

E{y∗[IM −D(D∗D)−1D∗]y} = σ2Tr{[IM −D(D∗D)−1D∗]IM} = σ2(M − 2nτ).

Motivated by this result we estimate σ2 by

σ̊2 =
y∗{IM −D(D∗D)−1D∗}y

M − 2nτ
.

This estimate can be used in place of σ2 while calculating the joint covariance matrix of {̊ξ`, ε̊`}`∈S .

C. Timing offset estimation

In the final step of our algorithm we estimate timing offset for all ` ∈ S . Here we use the relations

(12) and (10). In this section, we use the estimate {̊ξ`, ε̊`}`∈S of {ξ`, ε`}`∈S that was obtained by using

the algorithms presented in the previous section.

1) Blk-SIC-CR: The first method is correlation (CR) based technique. Using ξ̊` for some ` ∈ S and

applying the definition of ξ` from (12), we compute an estimate of s(h`, d`) as s` = VΣξ̊`. Clearly

s` ∈ CN1 . Then we estimate

d` = arg max
k∈{1,2,...,N1}

|s`(j)|.

This approach is motivated by (10) which shows that the index of the first nonzero component of s(h`, d`)

is d`. In general, the components of the CIR vector h` decays quickly. Therefore, we expect a few

significant components of s(h`, d`) are centered around the index d`. This should result in high values

in |s`(j)| where j is close to d`.

2) Blk-SIC-L1: Using (10) note that the timing offset d` is the index of the first nonzero component

of s(h`, d`). For any ` ∈ S, the alternating decent algorithm gives the maximum likelihood estimate of

ξ` = ΣV∗s(h`, d`), see (12). In addition, we note that s(h`, d`) is a sparse vector (see (10)). We propose
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TABLE I

SIMULATION PARAMETERS

Parameters Notation Values

Carrier Frequency fc 2.5 GHz

Sampling Frequency fn 30.72 MHz

Subcarrier Spacing ∆f 1.25 KHz

No. of RA Samples N 24576

Cyclic Prefix (CP) Samples Np 3168

Total PRACH Subcarriers M 839

to find a sparse vector valued estimate γ̂` of s(h`, d`) by solving the `1 norm minimization problem, see

[11] and references therein,

γ̂` =arg min
γ

‖γ‖1

subject to ‖̊ξ` −ΣV∗γ‖2 ≤ ϑ`
(29)

where ϑ` is a tuning parameter which controls the level of sparsity in γ̂`. The index of the first nonzero

component of γ̂` is taken as an estimate of d`. Note that we must solve (29) n times, once for each

` ∈ S, to estimate all {d`}`∈S .

The value of ϑ should be proportional to the trace of the covariance matrix of ξ̊`. For this we need

the covariance matrix expression given in Section IV-B.

V. SIMULATION RESULTS

The parameters of the simulated LTE system is provided in Table-I. As the RTs are located in different

positions within the cell, their signals arrive at the eNodeB with different power levels. We simulate this

by letting the signal to noise ratio (SNR) of each RT independent and uniformly distributed in [0, Q]

dB, where two different values of Q = 20 and 30 are considered. The SNR for `-th RT is defined as

SNR=20 log10(‖v`‖2/‖e‖2) where v` is the received signal at eNodeB from the RT (see (6)) and e is

the noise contribution. At each simulation run the mobile speed s varies in the interval [0, 25] m/s with

uniform distribution. The wireless channels are modeled according to Extended Pedestrian A model (EPA)

[30] if s ≤ 5 m/s and Extended Vehicular A model (EVA) whenever s > 5 m/s. The maximum number

of channel taps for any RT is 100. A cell radius of 2.1 km is assumed, which amounts to N1 = 530.

For the values of N1, N and M we see that τ = 20 is sufficient, i.e., 20 most significant eigenvalues

of ΘF(:,1:N1) contains above 99.9% energy. The format of the PRACH is 0. As specified by the LTE
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Fig. 1. (a) Active code detection probability by different algorithms at low CFO. (b) Average computation time for different

algorithms.

standard we derive the codes {c`}G`=1 are derived by computing the FFT of Zodoff-Chu (ZC) sequences.

The u-th root ZC sequence Zu is given element-wise as [31], [32]

Zu(k) = e−iπuk(k+1)/M , k ∈ {0, 1, . . . ,M − 1}. (30)

where u is chosen from the Table 5.7.2-4 in [17]. The (k + 1)-th element of c`+1 is given by

c`+1,k+1 =

M−1∑

m=0

e−
i2πkm

M Zu {(m+ ` ncs) mod M} . (31)

We take a cyclic shift ncs = 26 (see [17, Section-5]). To allow more RTs, we generate G = 150 codes.

Note that for a given root u, we can generate maximum bM/ncsc = 26 ZC preambles. Therefore we

need 5 different roots to generate 150 codes. The roots are selected from [17, Table-5.7.2-4]) and codes

are generated using (31). Recall that S denotes the set of all active RA code indices at a particular

random access opportunity. Here Ŝ denotes the set of all detected code indices. The probability that

S = Ŝ is denoted by Ps. The false alarm probability qfa = 10−5 in Blk-SIC algorithm. Two successive

interference cancellation IUS algorithms are considered for performance comparison: (i) successive multi-

user detection (SMUD) [1] and (ii) successive ranging multi-user detection (SRMD) [2]. The simulations

are performed in an Intel Core-i5 PC with 8 GB RAM.

A. Performance evaluation at low CFO

The value of CFO of every RT is uniformly distributed in [−0.015, 0.015]. Figure-1a shows the code

detection performance by different algorithms. The code detection performance of all algorithms are
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Fig. 2. IUS parameter estimation performances al low CFO. (a) RMSE of timing offset estimation. (b) RMSE of channel power

estimation.

almost similar for low SNR variation i.e, [0 20] dB. However, the performance of SMUD and SRMD

drop quickly at relatively high SNR variation. In fact detecting users at large SNR variation is challenging.

This is due to the fact that at larger SNR variation environment, the eNodeB receives very high signal

energy from the RTs closer to the eNodeB whereas the received signal energy from far RTs are very

small. The high SNR RTs act as interference sources to the low SNR RTs resulting in miss-detection of

low power RTs. SMUD and SRMD generally try to detect every component of h` separately whereas

Blk-SIC tries to detect the whole energy of h` by applying the block likelihood testing approach. Hence,

BLk-SIC is less affected by the SNR variation. Figure-1b compares the computation time required by

different algorithms. At [0 30] dB environment with 4 RTs the computation time of Blk-SIC and SMUD

are 0.0428 and 0.1325 sec respectively. Hence Blk-SIC is 3 times faster than SMUD. The time gap

decreases with increasing the number of RTs. For example, with 12 RTs Blk-SIC is 2 times faster than

SMUD. The computation time of SRMD is generally very high compared to other two algorithms.
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Fig. 3. Active code detection probability by different algorithms as a function of CFO mean. SNR variation [0 20] dB

Figure-2(a) shows the timing offset estimation performance by different algorithms. In general the

proposed method outperforms SMUD and SRMD where SRMD performs the worst. As before, SMUD

and SRMD are affected considerably by the SNR variation. At low SNR variations [0 20] and small

number RTs, Blk-SIC-CR and SMUD performs similarly, however SMUD tends to degrading performance

with increasing RTs. The RMSE of SMUD increases significantly for high SNR variation. In contrast, both

Blk-SIC-CR and Blk-SIC-L1 remain almost unaffected with SNR variation whereas Blk-SIC-L1 performs

the best. Figure-2(b) shows the channel power estimation error. The performance of all algorithms are

almost similar where Blk-SIC exhibits moderate RMSE. Interestingly the performance of the algorithms

are not much affected by the SNR variation.

B. Performance at large CFO

The value of CFO for every user is drawn from a normal distribution with mean h · γ and variance

10−4 where h is the sign bit taking value from the set {+1,−1} with equal probability. A larger value of

γ denotes larger CFO for a RT. SNR variation is kept to [0 20] dB. Figure-3 compares the code detection

performance of different algorithms as a function of CFO. At low CFO, SMUD and SRMD perform

similarly to Blk-SIC. However, their performance degrade quickly with increasing CFO. For example,

with K = 6 the Ps values of SMUD are 0.995, 0.44, 0.255 and 0.185 for γ = 0.01, 0.05, 0.1 and 0.15

respectively. In contrast, the Ps value of Blk-SIC remains above 0.5 for γ ≤ 0.4.

The CFO estimation accuracy by two different versions of Blk-SIC is illustrated in Figure-4(a). As can

be seen the Blk-SIC-AD outperforms Blk-SIC-TLS. The performance gap of those algorithms are large at
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Fig. 4. (a) RMSE of CFO estimate. (b) RMSE of timing offset estimation as a function of CFO. SNR variation [0 20] dB

low CFO means, however they tends to close each other at higher CFO mean. As described in Section-

IV-A, the complexity of Blk-SIC-AD is little higher than Blk-SIC-TLS. Hence, we achieve the good

performance of Blk-SIC-AD forsake of little higher computational load. Finally, Figure-4(b) illustrates

the effect of CFO on timing offset estimation accuracy. One important observation is that although

Blk-SIC-L1 outperforms all other algorithms for moderate value of γ, i.e., γ ≤ 0.3, its performance

degrades for larger value of γ. The region behind the fact is that at larger value of γ the CFO estimation

accuracy by Blk-SIC-AD degrades. As a result the estimation accuracy of h̄` is low. Consequently, the

CIR estimate ḧ` by Blk-SIC-L1 in (29) generates many spurious peaks which results in inaccurate timing

offset estimation. The situation can be improved by applying a hypothesis testing (see [11, Section-III-H]

for a guideline).

VI. CONCLUSION

The dimension of IUS problem for future wireless networks is expected to increase significantly. In this

work we provide a direction to reduce the problem dimension efficiently. Section-III shows that every

block matrix of the IUS data model is ill-conditioned. Hence, CIR of every RT’s can be represented

compactly. We exploit the compact representation in Section-IV and develop the Blk-SIC algorithm

that can work in presence of CFO. We also provide a direction for estimating noise variance which is
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required for timing offset estimation. Finally, the advantage of using this data model is demonstrated

using simulation results.

There are several interesting open questions that remains to be answered. The compact representation

is made possible by some results from Fourier analysis. This might be interesting explore further in

this direction in search of faster efficient algorithms. In addition, in [12] it was shown that the codebook

itself impacts the detection-estimation performance significantly. Since the results presented herein makes

way for larger codebooks, it is interesting to find systematic ways to design better codebooks. Finally,

our approach to CFO estimation relies on a first order approximation in (7). It might be worthwhile to

investigate we could avoid making such approximations.

APPENDIX

Recall that the N ×N DFT matrix F is given by

[F]k,j = exp{−i2π(k − 1)(j − 1)/N}/
√
N.

and Θ consists of m th through to m+M − 1 th rows of the M ×M identity matrix. The value of m

is specified in the LTE standard. Then

F̄ := ΘF = F(m:m+M−1 , 1:N1).

We assume N large and N �M , which is also true in practice. To study the singular value distribution

of F̄, consider G = F̄∗F̄. The singular values of F are the square roots of the eigenvalues of G. Now

Gk,` =
1

N

m+M−1∑

j=m

exp{i2π(k − `)(j − 1)/N}.

Let us define m̄ = m+ (M − 2)/2.

Gk,` =
exp{i2π(k − `)m̄/N}

N
×

m+M−1∑

j=m

exp{i2π(k − `)(j − 1− m̄)/N}. (32)

Next substitute x = j − 1− m̄. When j = m then x = m− 1− m̄ = −1− (M − 2)/2 = −M/2. When

j = m + M − 1 then x = M − 1 − (M − 2)/2 = (2M − 2 −M + 2)/2 = M/2. When M � N , we

can very accurately approximate the sum in (32) as an integral:

Gk,`e
−i2π(k−`)m̄/N ≈

∫ M/(2N)

−M/(2N)
exp{i2π(k − `)x} dx

=
sin{π(k − `)M/N}

π(k − `) . (33)
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Let us define

D = diag{ e−i2πm̄.0, e−i2πm̄.1, · · · , e−i2πm̄.(N1−1) }

Then

G ≈ D∗QD

where

Qk,` =
sin{π(k − `)M/N}

π(k − `)
Since D is unitary, the eigenvalues of G and the eigenvalues of Q are almost identical. However, it

is wellknown that about (MN1)/N eigenvalues of Q are very close to 1, and the rest are very close

to 0 [33]. It should be noted that for practical values of N,M and N1 the above approximation is

highly accurate. For instance if we take N = 24576,M = 839 as per LTE specification, and N1 = 730

associated with a cell radius 2.1 km, then the absolute relative difference between the eigenvalues of G

and Q is below 4.6× 10−5.
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