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Improved LTE like initial uplink

synchronization via reduced problem Jdimension

Md Mashud Hyder and Kaushik Mahata

Abstract

Initial uplink synchronization (IUS) is a random access pr. ~ess ir T7 £ that enables the eNodeB to
detect, and uplink synchronize new user equipment. In future network. with huge number of devices, the
number of simultaneous IUS users will increase significa. ‘'v. L. ~“uition, it is desirable to serve users
moving at high speed. We exploit the structure of the pbv<i~~' -~~ ,m access channel (PRACH) in LTE to
reduce the dimension of the underlying data model. This rea.. *ion gives a very compact representation of
channel impulse response (CIR). We utilize this rep. “se’ cauon to develop an efficient algorithm which
can work in presence of large multiple access . ~rferc \ce (MAI) and high carrier frequency offsets
(CFO). When compared with the state of the art mehods. the proposed method is capable of detecting
a significantly higher number of TUS users and « n allow high values of CFO. In addition, it produces

very reliable estimates of both CIR and ~7" of the detected users.

Keywords: Random Access, initia” uplink s, achronization, subspace dimension reduction.

I. INTRODUCTION
A. Background

LTE uses single carrir c frequ. ~cy-division multiple access (SC-FDMA) in uplink. This requires the
uplink signals from difi. -er . use. equipments (UEs) to be aligned in time, and have nearly the same power
level when they arr've at *he eNodeB. This is possible only if each UE delays and amplifies its uplink
transmission approp. ‘ately .o compensate for the delay and the gain associated with its channel impulse
response (CIR . For a new UE the delay and gain parameters are unknown. Hence LTE requires every

new UE to unde._~ = aetwork entry procedure called the Initial Uplink Synchronization (IUS). Each UE
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wanting to enter the network uses some downlink control signals to downlink synchronizes itself with
eNodeB by estimating the relevant frequency. An UE uses its estimates of downlin’. . hannel parameters
during IUS. TUS is a contension based random access (RA) process. The LTE st ... 'ard specifies certain
special time slots when UEs are given the so-called “RA opportunity”. Furti. o ore, LTE allocates a
set of carrier frequencies called physical random access channel (PRACH) for .. A data transmission. A
downlink synchronized UE wanting to enter the network, also refered to as 8 <a. lom Access Terminal
(RT), must select an RA opportnity to transmit a code over the PR*“”H. The code must be chosen
at random from a pre-specified codebook. Note that at a particulat RA opj ortunity, multiple RTs can
transmit signals. The signals transmitted by all RTs participating “.. an RA opportunity are superimposed
on each other in the channel, and the resulting signal is receiv.. by ae eNodeB. The eNodeB uses
this received signal to detect the transmitted codes, and for each ac. cted code the eNodeB estimates the
corresponding CIR, propagation delay and the carrier freqency ~ff-:t (CFO) [1]-[3]. The detected codes
and the corresponding CIR power, propagation delay and B stimates are subsequently broadcast by
the eNodeB in a response message. Now the UEs can use u. " information to properly delay their uplink
transmission and select appropriate transmit power le =',. Note that if multiple RTs transmit same code
then collision occurred in the transmission and the 1S process of associated RTs become unsuccessful.
Similar random access processes has also bec.” au.* 1 in WiMAX (IEEE 802.16 wireless metropolitan
area network).

Multiuser code detection and their cc.respon ‘ing CIR, propagation delay and CFO estimation are the
main task of [US. Among the state of he an .~ shods, [4] utilizes a set of generalized chirp-like polyphase
sequences to get sharp time delay ~<ti nate.. The work in [S] demonstrates that the frequency-domain
correlation approach outperformr its time domain counterpart for IUS parameter estimation. The method
proposed in [6] allocates a sm2ll numuer of subcarriers to each ranging opportunity so that most of the
RTs are expected to transr 't o’ disjoint sets of subcarriers with minimum level of MAIL. However, the
reduction of the number ,f effective subcarrier for each user results in the degradation of timing estimation
performance [1]. A simw.  apr oach has been proposed in [7] for channel synchronization. This method
assumes that the 1 plink . gnals are transmitted over disjoint subcarriers, and the receivers use filter
banks to separate mu “ine ; codes. An iterative parallel interference cancellation (IPIC)-based multiuser
detection and « stimatic 1 algorithm is proposed in [8] for the coordinated multipoint (CoMP) transmission
in LTE system. 1. authors also proposed a RA subchannel allocation scheme which can suppress
mutual inten. *.nce between coordinated users and noncoordinated users. The work in [9] improves the
IUS performance by dividing the ranging signals into several groups with each group being transmitted

over exclusively assigned subcarriers. The iterative maximum likelihood algorithm in [10] applied an
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expectation-maximization (EM) type technique to mitigate MAI in the user detection process. Successive
interference cancellation (SIC) algorithms [1]-[3] are very popular in IUS for thei’ . v complexity and
efficient user detection capability. In its most basic form, the algorithm works .. an iterative fashion
where the strongest path of each active RT is detected and is removed from th. ve .eived signal and the
resulting signal is used in succeeding iterations. In [11] a sparse recovery fran.. vork is proposed. The
theory is used in [12] to optimally select the Zadoff-Chu (ZC) codes in tb . RA cu.'~book, and in [13] for
a fast SIC algorithm. The non-linear distortion of transmission signal ~ver w.-ltipath fading channel in
LTE system is analyzed in [14] which helps to understand the inter-c stortion interference (IDI) between
multiple users and improve IUS performance. Multi-user timinir . uffset estimation in a random access

environment for massive multiple-input multiple-output (MIMO) ., stems is proposed in [15]. The spatial

degrees of freedom provided by massive MIMO systems are used to, sther with the inherent different time
instants of reception of UEs’ signals to resolve inter-user ~olu. ~n-. Finally a subspace based algorithm
is applied to estimate timing offset of different users.

In the LTE context, there are two main shortcomings ot .“e approaches outlined above [1]-[3], [11],
[12]. Firstly, when the channel power of the UEs va, * ,ver a wide range (due to different locations of
users in a wireless cell), then the UEs with smal. <i.>ancl power are very hard to detect. Secondly, the
IUS algorithms [1]-[3], [6], [7], [16] assume «C i 1egligible. Indeed, in 2.5 GHz LTE with format-0
PRACH [17], (see also Table-I), the CFO due to errors in the frequency synthesizer is typically less
than 400 Hz, which is about 30% of the PRAC." subcarrier spacing. However it is increasingly desirable
to be able to synchorize UEs movir s at n._*+ speed. Then, due to Doppler effect, the CFO would be
significantly higher. The recent R:. <c .ebc sk design in [12] attempts to make the codebook robust to
the adverse effects of CFO. Hr vever, the hybrid algorithm of [18] is the only method for joint CFO
estimation and user detection UJnfortuwately, its user detection performance is very sensitive to channel
SNR variation (see [13, Fi_ure _]).

The future networks e ~xpec.ed to connect huge number of devices [19]. This will increase the
number of simultaneous ™ IS r.quests by a considerable proportion. Now the RA process assumes that
the number of code , G in . e RA codebook is much larger than the number of simultaneous requests. The
probability that a nar.’~!-. code is transmitted by an RT is 1/G. If there are n RTs, then the probability
that a code is -ansmit. :d by no more than one RT is (1 —G~!)" +nG~(1 —G~1)"~1. This probability
of a collision-frec .uS should be as close to 1 as possible. For LTE, G = 64. Hence with n = 5 the
probability o.” r ollision free IUS is 0.85. To serve a larger number of RTs with the same probability of
collision-free IUS we must increase G. For instance, to support n = 10 with the same confidence we

need G > 150. However, an increase in G does not only increase the complexity of the IUS methods,
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but also severely affect their detection-estimation accuracy. Therefore it is of considerable interest to seek
alternative solutions capable of delivering acceptable detection-estimation performar .. for a significantly
larger codebook size GG at some moderate computational complexity. At the sam ‘me it is desirable to

be able to serve UEs moving at a high speed, and cater for UEs with widely v. -v’ i1g channel power.

B. Contributions

In this paper we aim to address the above challenges by exploiting cer.. » mathematical property of
LTE-PRACH and its impact on the signal model. We show that th under. 'ing dimension of the IUS
problem is significantly smaller than what was thought before. Te ''nac. “~..d this in a simple way, first
consider the scenario where the RTs have negligible CFOs. Thcn *'.¢ p1 :vious research has shown that

the signal y received by the eNodeB in a particular RA opportu. ‘v can be expressed as, see e.g. [12],

G
y=>Y Tihy = )
(=1

where G is the number of codes in the codebook, ana . is the additive measurement noise vector. The
vector hy depends on the CIR of the RT transmit. ug .~ ? -th code in the codebook. It’s length N}
depends on the cell radius and the maximum C ™™ len, ‘h in the system (see discussion around (8) for
detail). Note that ||hy||2 = 0 if the ¢-th code does no. trausmitted by any RT. The signal y is of dimension
M, where M is the number of adjacent subcarric. -~ in the PRACH. The matrices {F[}?:l are known. In
particular, we can calculate T’y if we knov .. the ¢ th code in the codebook. Therefore, the IUS problem
involves solving the unknown vector
B =[] Rl ... RLT.

of dimension N;G from M noi‘ ' linear nieasurements, where (.)T denotes transpose. In a practical LTE
system with a cell radius 2.1 ¥ we have N; = 530. In addition, M = 839 and G = 64. This means we
have N1 x G = 33920 unl ~ow .s in (1), which needs to be solved from 839 noisy measurements. This
is an ill posed task in a' sen~e o1 any further information.

To handle the above p. ~len, the state-of-the-art methods exploit the fact that in reality, the number n
of active RTs is ac! 1ally a "ot smaller than GG. Hence in reality, the majority of {ﬁg}?zl are zZero vectors.
The number of non-. =~ atries in A is a bit less than n.N;. In the following the non-zero entries in h
will be denote 1 by K However, we don’t know those few values of ¢ for which h, # 0. This makes
the detection-estiu.aon problem a sparse signal recovery problem. Indeed, some recent algorithms for
solving the 1 ° problem use the principles of sparse recovery. The SIC algorithms in [1]-[3], [13] can
be viewed as special variants of the class of matching persuit algorithms [20]. The algorithm in [11] uses

a mix of ¢y and ¢; minimization strategy.
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How well a sparse signal recovery problem can be solved, depends on three integers: i) The number
of unknowns, which is N1G in above; i) The number of measurements, whic., ‘< M in our case;
and iii) The number K of non-zero components in the unknown vector h.In? e K is proportional
to the number n of active RTs. The theory of sparse signal recovery suggests “a’ for a given M, and
the number of unknowns, we will achieve better detection-estimation result if tne alue of K is reduced.
This explains why the existing algorithms produce good results for sma ier * win. 5 of n. If n increases
then K increases proportionally, and eventually h is no longer sparse e~~ugh “~r the estimation methods
to succeed. In such cases one may expect some improvement in the results ° the number of unknowns
is somehow reduced. In this paper we describe a way to accor push exactly that. We propose a new
parameterization such that we can work with a significantly sma.”_r nu' iber of unknowns, and yet, the
unknown vector retains the same level of sparsity, i.e. the ratio ot .“e number of non-zero entries in the
unknown vector to the dimension of the unknown vector “ema. *< ~.most the same.

Recall that Ny is the number of columns in I'y. Onr wo= ‘g founded on the observation that the
dimension of the column space of I'; is much much smalle: *han Nj. This is true for any £. In particular
we show in Appendix that the dimension of the co. v as space of I'y is [M N;/N|, where N is the
number of OFDM subcarriers used in the syste.r. ™ aa LTE system employing M = 839 one has
N = 24576. For a cell of 2.1 km radius Ny - c22 lence the matrix I'y is of size 839 x 530. But its

column space is of dimension [233X5307 = 19 only.

Consider an M x [MN;/N| matriv U, be such that its columns form an orthogonal basis of the
column space of I'y. We can calcular. suc, *» U, in many ways like the QR factorization of I'y. Since
the columns of U, are mutually o: ~og ynal for any given hy, there is a unique [M N;/N] dimensional
vector hy such that

I‘gﬁg = U,hy.
In addition by, = 0 whene. 4y = 0. Since hy # 0 for only a few values of ¢ corresponding to the
codes transmitted by thr act’ /e R1's, we conclude that hy # 0 for those few values of ¢ corresponding to
the transmitted codes. Wi, th se observations, we can now cast the detection-estimation problem under
consideration in te: ms of 1'7,@}?:1 where (1) is rewritten as

G
y=) U +te. e)
=1

Now our ohiective .5 to find {hg}?zl. We can also account for the sparsity, by devising an estimation
strategy that . * 2mpts to maximize the number of zero vectors in the solution set {hg}ngl. In the specific
LTE scenario discussed before, M = 839 and total the number of unknowns is 19 x G = 19 x 64 = 1216.

According to the theory of sparse signal recovery, this problem is a lot easier than the original problem.
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We shall demonstrate that the above modified formulation has several additional advantages. The
dramatic reduction in the number of unknowns per code makes way for larger code’ ¢ “ks. For a fixed M
we can now increase GG and still the total number of unknowns can be kept wit* . a manageable limit.
That in turn allows more active RTs, and still avoid collisions during the randv ~ - ccess process. In the
above discussion we have assumed that the CFO of an active RT is negligible. However, we shall see
later that the reduced number of unknowns in (2) allows us to account sor ‘.c ~FOs, and solve them
along with {he}?zl in a rather reliable manner. The reduced probler “ime.. ion brings computational
advantages as well. We demonstrate these advantages by proposing a. SIC ty e detection algorithm. The
detection step yields estimates of {hg}le. Subsequently, we us. wese w0 estimate the CIR and CFO.
The underlying algorithm employs the maximum likelihood pn.._.ple, .nd thus, is very accurate. The

utility of the proposed approach is demonstrated via simulation st 'y.

II. SIGNAL MOL.."".

In this section we briefly review the signal model to. the IUS problem in an LTE like system. The
description below closely follows the derivation in , '~,. ~ ™% system uses orthogonal frequency division
multiple access (OFDMA). As mentioned beforr we u < N to denote the number of subcarriers. Each
subcarrier carries one discrete-time data sample. 1 us, an OFDM frame carries [N discrete-time data
samples. Out of the NV subcarriers, a set of M ac ~cent subcarriers are allocated for the PRACH.

Recall that the RA codebook consists .. ' codes. We denote them by ¢y, co, ..., cg. Each of these
codes is an M dimensional vector, dei. =d by computing an M point discrete Fourier transform of a
Zodoff-Chu sequence, see [17] for ctai’,. See [12] for guidelines to choose better codes. During an RA
opportunity an RT, say T, calcula’ss tue "= 'V samples by calculating the /N point inverse discrete Fourier

transform of the chosen code ‘4. 1. narticular, the ¢ th data sample s(q) is given by
M

1
= 7% > cu(m) exp{i2njmg/N}, ¢ =1, 3)
m=1

where c;(m) denotes tb . m h component of ¢. In addition, jy, is the index of m-th PRACH subcarrier,

i(q)

and we denote Z := {0,1, . N —1}. Apart from the data-samples an OFDM frame contains its usual
cyclic prefix. In the sequel V,, denotes the length of the cyclic prefix. In addition, the frame transmitted
during an RA o7 ortu..., contains N, additional guard samples. Together the data samples, the cyclic
prefix and the , uard sa 1ples are concatenated to generate N, + N + N, channel symbols. We denote these
channel sy “~ls by w(k),k = —Np,...,—1,0,1,...,N + N, — 1. In particular, these are constructed

from s(q), ¢ ~ Z as

s(k mod N), —N,<k<N -1,
w(k) = “4)
0, N<k<N+N,—1,
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Note that (k mod M) :=k— M - [¢/M |, with |r]| denoting the largest integer less than or equal to r.

Suppose h(p), p € {0,2,--- P—1} are the uplink channel impulse response (CIP* v =fficients between
the transmitter T and eNodeB where P is the channel length. Discarding the cyc’.. »refix and the guard
symbols, let {v(/c)}/{f:_o1 be the contribution of T in the symbols received by ‘hr eNodeB during the
RA opportunity. These are delayed and convoluted version of the transmitted s, mbols. For k£ € Z, the
received signal at eNodeB be

d+P—-1
(k) = 2™ /N N h(p — d) w(k — p),
p=d
d+P-1
= &2 /N N p(p—d) s{(k -p mol N}, 5)
p=d

where the propagation delay d depends on the distance hetween ~ and eNodeB, and ¢, is the CFO
(normalized by subcarrier spacing).
The eNodeB computes the N point DFT of the v « we vector v := [ ©(0) o(1)--- o(N —1) T,

where (.)T denotes transpose. Then it can be showr -t (see [12, eq. (15)])

i _
L%l
| ho
|
hi
v = Qdiag(c/))OF ) ©
hp_1
O(N-P-d)x1 |
QZ 4 I]w + 1.€p + 0(63)7
vhe e Hy ) = in(k=1)/N
e

" Nsin(n(k=1)/N)>’ k ?é L.
Here F is the N x N T.FT natrix:

£ k,m = exp{—i2n(k — 1)(m — 1)/N}/\/N,

® is an M x N -~ow ._l_ctor matrix such that m-th row of ® is the j,,-th row of the N x NN identity
matrix, Iy; is /' x M identity matrix, 0144 is a d-vector with all zeros.
Let Py, "~ the maximum value of P, and D be the maximum value of d. Denote N1 = Pp.x + D.

Then, d + P ~ Nj. Thus, all rows of

[ 01xa ho h1 -+ hp_1 Opn—pg) 1" (®)
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with indices larger than N; are zeros. Hence we can write (6) as
v = Qfdiag(cf)GF(:,l:Nl)s(hv d)7 ©

where we use the Matlab notation F(..y,) to denote the sub-matrix of F ons.ting of its first Ny

columns, we define the Ny dimensional vector valued function
s(h,d) =[ 01xqa BT O1xn,—p_q) " (10)

of a P < Py .x dimensional vector h = [ hg hy --- hp_1 |T and .ninte.>r d < Dyyx. In a practical

system both Pp,x and D are known. Therefore, we can estimate Ny ! 7.

ITI. A COMPACT BLOCK SPARSE S *NAIL M UDEL

In the Appendix we show that ©F . ;.,) has only 7 = TMN; N significant singular values, and
the remaining singular values are very close to zero. This . <ult holds when N > M, which is true
for the practical LTE systems. Hence we can very accu. fely approximate OF . 1.y = UXV*. U is
an M x 7 matrix with its columns being the 7 mu wau. - *hogonal left singular vectors of OF . 1.n,)
corresponding to its 7 significant singular values “imil.. Ty V is an N X 7 matrix with the 7 significant
right singular vectors of OF . 1.,) as its colimns .nd V* denotes complex conjugate transpose. 3 is
the 7 x 7 diagonal matrix of the significant singu. -+ values.

Now consider a IUS opportunity wher: sev +al RTs transmit simultaneously. Let hy be the CIR vector
of the RT sending code ¢y, and dy be .~ pro agation delay. Then the received data y at eNodeB is

obtained by adding the contributior , of .he form (9) from all the RTs:

G

Y _ Qudiag(cr)OF (. 1.n,)5(he, do) + e, (11)
=

where e is the additive mes sure nent noise. In practice, the number of active RTs is much smaller than

G. If ¢; is not sent for a partic “lar ¢ then s(hy,dy) = 0. Define

2, BV¥s(hy, dy), (12)
£y = diag(ce)U, Bg = HA[. (13)
A:[AlAgAg], B:[BlBQBg] (14)

Now substitute & ;.x,) = UXV™ in (11) and using the expression of Q, from (7), we get

G G
y=> A+ B te (15)

(=1 (=1

Now given y, the IUS problem requires to estimate:
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1) The indices of all active code, i.e., {¢ € {1,2,---G} : ||]|2 # 0}.

2) For each active code index ¢, estimate the associated channel power [|€,

and CFO ¢,.

2, t « <mission delay dy

In LTE system, each ¢, is obtained by computing the FFT of some Zodo.” Cau codes [17]. As a
consequence, it turns out that each element of the vector ¢, is of unit modulu. "12]. As a result, the

matrix diag(c) becomes orthogonal. Therefore
AjA, = U*diag(cy)*diag(c,)U =", (16)

for all /.
We note in passing an interesting implication of the model ( 5> whe the LTE cell radious is amall

and CFO is negligible [12], [16], [17], i.e., €, = O for all £. Con. uently (15) reduces to

G
y=> A+~
=1

If the cell radius is also small, then often [ A; --- A | has more rows than columns. In that case
we estimate [ €] -+ &7 ] using linear least squ.ves as | A1 -+ Ag ]Ty, where (.)T denotes the
Moore-Penrose pseudo-inverse operator. This esti.".. *or 1. can be shown to be the minimum mean square
error (MMSE) estimator [21] provided that tl - =lemcnts of e are independent and identically distibuted.

We can detect users by applying a simple hypothes. test on the components of [ A; --- Ag [Ty [21].

IV. SIC ~VPE C¢ DE DETECTION METHOD

If the cell radius is not small, tren [ A; --- Ag | has more columns than rows. In that case the
above mentioned linear least sq ares o, ™ vach is not applicable. Besides, it is desirable to be able to
accommodate non-trivial CFO valuc. n the system. In that case we must work with the complete model
(15), and we are no longer ible to apply the linear least squares method. For this reason we propose a
code detection method frr the ~odel (15). It is an enhanced SIC [22] method. Let the set of all active
RA code indices be

SZ{EE{LZ"'G}:H€ZH27EO}’ (17)
Given the data , und au index ¢ € {1,2,...,G}, consider two hypotheses:
Ho: L& S; Hi:Le€S. (18)

To decide in ™ ,or of one, we perform a generalized likelihood ratio test (GLRT) [23], [24]. To compute
the associated test statistic we need the probability density function of y under each hypothesis. This

is used to compute the maximum-likelihood (ML) estimates of unknown parameters in the probability
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density function. Finally, the GLRT statistic is formed by plugging in the estimated values of the model
parameters in the expressions of the probability density functions. In practice, th . ‘robability density
functions are not given, but we need to device some realistic probability models ~ese models must be
realistic in two ways. Firstly, ML estimation of the underlying model paramew = - st be a well posed
problem. Secondly, we should be able to validate the model for the applications “'nder consideration.
Under Ho we model y as a zero mean complex Gaussian random v .ctor w... a covariance matrix

02Xy The ML estimate of of is [25]

68 =y y/M. (19)

Under hypothesis H;, we assume that y to be complex Ga ssi~.« w'th mean A&, and covariance

matrix U%I M. By (16) AjJA, =1, and then the ML estimates € £, .ud a% are given by [25]
§r=Aly, 5=y (I - A ,/M. (20)
The Gaussian density function with mean g and covar. ~ce matrix oI, evaluated at y is given by

N(y, m,0%) = (2n0®) ™™ o {—|ly — pll3/(20°)}.
Using (19) and (20) in above the GLRT statistic fc - ou. hypothesis testing problem is given by
0,65 *AAsy\ M2
Liy) = V.09 <1y ‘ Ey) . @)
N(y ».67) Yy
Instead of working directly with the G RT stati tic (21) it is more convenient to work with a monotonic

function thereof:
Y AAY

1
_— =TT 22
. {L(y)2 Y AATY 22)

L1'y) -

where A, is a M x (M — 7) matrix with mutually orthogonal columns such that AZAZ = 0. While
deriving (22) we use A/A* + A VA;? = Is. This also implies that under # the covariance matrix of the
complex Gaussian vecto y*[A; A, | is 02Iyr; and hence £;(y) is central F distributed with 2(M — 7)
and 27 degrees of frec~ 1. H.nce we can apply an F-test on £;(y). Denote by F(-) the central F
distribution functio'. with ?(M — 7) and 27 degrees of freedom. For a target false alarm probability gg,,
we decide H if L1, > ¢ = F~1(1 — gg,). Otherwise we decide H;.

We embed t € abov. hypothesis testing approach in an SIC framework, where we successively remove
the contributions . © e detected codes from observed data to overcome the interference of the stronger
sources on ti. > ¢ chers. We call it block successive interference cancellation (BIk-SIC) algorithm. The idea

is outlined belov/:

1) Set p=1 and r; = y. Construct an empty set T = (), an empty matrix Wg. Set K = F~1(1 — gz,).
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2) Block index detection:
I={¢te{1,2,---G}\T: Li(rp) <k}

3) If T = ) then exit.
4) Set T=T UL
5) Update ¥, = [\I/p_l Ay Ayr) By - BH(L)], where L is the .. dina..'y of the set I.

*

6) Project y onto the null space of ¥

rpr1 = Cpy (23)

where C), = I/ — \pr(\IJ;;\I/p)_l\Il;.

) p=p+1

8) Goto Step 2.

9) Output: set of detected codes T.

BIk-SIC initializes the set of all detected codes T = 7 ...: we residual as 7y = y. At p-th iteration,
BIk-SIC treats the residual r, as the measured d~*2 and computes £q(r,) for every block Ay, ¢ €
{1,2,--- G}\T. It then selects the block indices I bas. < on a threshold value . Once the block indices
are chosen, the corresponding block matrices are ~ou.~tenated with the matrix W,. Step-6 updates the
residual 7,11 by projecting y onto the null sp.-e or 27

We neglect the effect of By while calculating GLRT statistics in Step-2. However, while constructing
V¥, in Step-6, we incorporate By also. " 0 expla n the reason recall (15). The vector y is constructed by
A, multiplied with &, and B, multir .iled wiu. :¢&,. Therefore, if £ is an active code index then we know
that both ||&,||2 and ||e/&,||2 are no..<.0. } ence, we concatenate both A, and B, in W¥,,. However, the
energy of e is generally very Ir .. ‘e < 0.3). Therefore, if we select codes based on GLRT statistics for

By then the false alarm rate ‘. s to increase.

A. Estimation of {&),€ foer
Assuming § is known 1. “m “.ae BIk-SIC algorithm described in the the previous section, we can rewrite
(15) as
Y=Y A+ Bieki+e (24)

leS leS

where Ay, R,/ € o are known. Let the % th index in S be S(k). We propose to estimate {&,, €/}rcs

by solving th  .1onlinear least squares problem

y— Y Ak, - B

lesS lesS

2

minimize

(25)
{€0,€,}ees
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Note that (25) is motivated by the Gaussian maximum likelihood approach. However, this is a non-convex
problem, and thus does not admit any known polynomial time algorithm for solutic ... Nevertheless, (25)
is a bilinear least squares problem. We shall exploit this structure to device a .. » step algorithm. In
Section IV-A1 we present a linear least squares and total least squares based 1. ~-7 erative algorithm. In
addition, we also have a more accurate, iterative alternating decent method. U..> may use the LS-TLS

based estimates as initial estimates to kick start the alternating decent m chor.

1) BIk-SIC-TLS: We start by relaxing (25) where we work with a <. of au -iliary unknowns
Co="&r, LES. (26)

Subsequently, we obtain estimates of {(,, &, }rcs by solving hu. ar lewst squares problem

2
) 27)

minimize

_ A U B
{Ce:B}ees Y Z Esg P ZC(

LesS oo

which is a relaxed version of (25). The analytical s .. ““~n ot the linear least squares problem is known,

and we can readily compute the solution. We denote L * associated estimates be {E 0 ¢ 1 }ees.

Now we use the fact that ¢, is real-valued, and 1. acdition, ¢, = &,€,. Hence the real valued matrix

Re(&,) Re(¢r) } | Re(&)
= [1 €]

Im(&,) Im(¢,

is a rank-1 matrix. Using this inforr atio’ we use a total least squares method to find improved estimates
of {&,}ses. From these we shal' de. e «stimates of {e/}scs. For each ¢ € S we form the 27 x 2

real-valued matrices

i = Re(§,) Re(¢y) C tes.

Im(&,) Tm(¢y)

By the total least square. tinc.ple, the best rank-1 approximation of ﬁg is given by

T

Uy w1 uy w2
o = cwy | 1 — |,

U wo U w1

where o is “he largest singular value of M, [ w{ wu] |7 is the corresponding left singular vector, and

[ w1 we |T is “ae corresponding right singular vector. From here we get a refined estimates of &, and ¢;:

M . . w2
& = (u1 + iug)ow, €£=wf, {eS.
1
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2) Blk-SIC-AD: Next we apply an alternating descent (AD) algorithm to solve (25). In this algorithm
the BIk-SIC-TLS estimates could be used as initial guess. Recall that the number " active users is n.

Hence the cardinality of S is n. We denote the ¢ th index in S by S(¢). Let us ’-Sune

e=[esq) €s@ o €sm T

E=[&5 €o 0 &5 T
W(e) =[ As) +es)Bsay -+ Asm) +esembs 0 ],
Z(&) = [ Bsnyésa) Bs@éswe) - Bswm fsm) |-

For a given e the cost function in (25) is minimized with resp: ct tc ¢ by taking & = W(€)y, where
W (€)' is the pseudo-inverse of W (€). Similarly, for a giver. ¢ the ~~.t function in (25) is minimized
with respect to € by taking

_ T -
Re{Z(£)} Re {y — Dk As<k>5s<k)}
m{Z@)} | | I {y- S0 Aswésw |

The alternating descent algorithm [26]-[28] solves \'>) » , .erating the above steps:

(28)

1) Set € = 0 (or initialize € using the BIk-SIL -TT.S ¢ ‘timates)

2) Compute £ = W (é)fy

3) Update € as in (28)

4) Exit if the change in the update € .s be. w a predefined threshold; otherwise goto Step 2.

The alternating decent algorithm alwas cu. er- es monotonically to a stationary point of the cost function
in (25) [27, Proposition-3]. We shal” use {E ¢ ‘e}ees to denote the estimates obtained using the alternating

decent algorithm.

B. Covariance matrix of {€ ,¢; es
Let us denote
G=" - Pg Esu)ﬁsu) ES(K)és(K)L
vhere, .% = AS(Z) + ]§5(e)65(e),

I Re(A;) —Im(Ay) 5 Re(By) —Im(By)
l = ) = ’
Im(A;)  Re(Ay) Im(By) Re(By)

g = [Re(§,)T Im(&,)T]7
If e is complex Gaussian with covariance matrix 021, then using the results available in [29] it can be

verified that the large sample covariance matrix of | Eg(l) Eg(n) €77 is 0?(GTG) L. We need
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to know the true values of {&,, €/}scs to compute this covariance matrix. In practice, the true values
are unknown. Hence it is common to use the estimates {{ ¢, €0 }ees obtained from f . alternating decent

2

algorithm in lieu of the true values. The covariance computation requires o as w7 .. and we can estimate

that from the data. Let us define

D:[JAS1 ASn le -+ Bg ]

n

In (24) notice that y — e resides in the column-space of D. Hence it f~'lows ‘hat
y*{I,; — D(D*D)"'D*}y = e*{I); - D(D*D) 'D*}e = Tr, T/ - D(D*D) 'D*]ee*}.
Recall that e is zero mean complex random vector with covaria. . mat x o2I,;. Hence
E{y*[Lyy — D(D*D)"'D*|y} = o’ Tr{[Iyy — D{M*D) ™' D*|Iys} = o*(M — 2n7).

Motivated by this result we estimate o2 by
.o y{Iy —DID*D) 'D*}y
0= "——7— — e
M -?2ar

This estimate can be used in place of o? while c.'cu'tig the joint covariance matrix of {E‘g, €r}oes.

C. Timing offset estimation

In the final step of our algorithm w. estimai : timing offset for all / € S. Here we use the relations
(12) and (10). In this section, we us . the estun.iate {5 0, €0}ees of {&;, €r}ies that was obtained by using
the algorithms presented in the previc s se .tion.

1) Blk-SIC-CR: The first m i is correlation (CR) based technique. Using éz for some ¢ € § and
applying the definition of & 1. m (12), we compute an estimate of s(hy,d;) as s, = VZ%Z. Clearly

sg € CN'. Then we estimatc

dy = sp(7)].
¢=arg max |se(5)]

This approach is m tivatec by (10) which shows that the index of the first nonzero component of s(hy, dy)
is dy. In general. th. ~or_.ponents of the CIR vector h, decays quickly. Therefore, we expect a few
significant cor ponent: of s(hy,dy) are centered around the index dy. This should result in high values
in |s¢(j)| where ; .. close to dy.

2) BIk-SIC 7 [: Using (10) note that the timing offset d, is the index of the first nonzero component
of s(hy,dy). For any ¢ € S, the alternating decent algorithm gives the maximum likelihood estimate of

&) =XV*s(hy,dy), see (12). In addition, we note that s(hy, dy) is a sparse vector (see (10)). We propose
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TABLE I

SIMULATION PARAMETERS

Parameters Notation Values
Carrier Frequency fe 2.5 GHz
Sampling Frequency fn 30.72 MHz
Subcarrier Spacing Af 1.25 KHz
No. of RA Samples N 24576
Cyclic Prefix (CP) Samples Ny 31F .,
Total PRACH Subcarriers M 89

to find a sparse vector valued estimate 4, of s(hy, dy) by solvin, the ., norm minimization problem, see
[11] and references therein,

Y =argmin ||y,
7 (29)

O SV <9

subject to

where 9 is a tuning parameter which controls t} . 'ever ~f sparsity in %,. The index of the first nonzero
component of 4, is taken as an estimate of 4.. N¢*= that we must solve (29) n times, once for each
¢ e S, to estimate all {dg}ses.

The value of ¥ should be proportion?” to .= trace of the covariance matrix of éz' For this we need

the covariance matrix expression given 1. Sect’yn IV-B.

v. »IMULATION RESULTS

The parameters of the simvl~ted LTL system is provided in Table-I. As the RTs are located in different
positions within the cell, tk »ir s'gnals arrive at the eNodeB with different power levels. We simulate this
by letting the signal to .o0ise rauo (SNR) of each RT independent and uniformly distributed in [0, Q)]
dB, where two differen.  duer of (Q = 20 and 30 are considered. The SNR for /-th RT is defined as
SNR=201log;(|lve" 2/|le]|.} where vy is the received signal at eNodeB from the RT (see (6)) and e is
the noise contribntio,. A+ cach simulation run the mobile speed s varies in the interval [0, 25] m/s with
uniform distrit 1tion. 1 e wireless channels are modeled according to Extended Pedestrian A model (EPA)
[30] if s < H m/s awu Extended Vehicular A model (EVA) whenever s > 5 m/s. The maximum number
of channel ta> for any RT is 100. A cell radius of 2.1 km is assumed, which amounts to N; = 530.
For the values of Ny, N and M we see that 7 = 20 is sufficient, i.e., 20 most significant eigenvalues

of ®F. 1.n,) contains above 99.9% energy. The format of the PRACH is 0. As specified by the LTE

DRAFT



16

102 3

‘ #— BIk-SIC: SNR=[0 20] dB
S~ SMUD: SNR=[0 20] dB |4

SRMD: SNR=[0 20] dB
| —B— BIk-SIC: SNR=[0 30] dB
- ~SMUD: SNR=[0 30] dB
‘ SRMD: SNR=[0 30] dB

—¥— BIk-SIC: SNR=[0 20] dB
0.8 —6— SMUD: SNR=[0 20] dB
’ SRMD: SNR=[0 20] dB

Average Computation time (sec)
=
o
>

0" 0.757 —EB— BIk-SIC: SNR=[0 30] dB ]
’ —=— SMUD: SNR=[0 30] dB
o7l SRMD: SNR=[0 30] dB /—*/*/*
0.65 | —C ?
10 = ]
06
0.55 -
05 . . . . . . . . . 102 . . . . . . . .
4 5 6 7 8 9 10 11 12 13 14 4 5 6 7 8 9 10 11 12 13 14
Number of users (K) Number of users (K)
(@) (b)

Fig. 1. (a) Active code detection probability by different algorithms at lo. CFO (b) Average computation time for different

algorithms.

standard we derive the codes {cz}?zl are derived by ~or puung the FFT of Zodoff-Chu (ZC) sequences.
The u-th root ZC sequence Z* is given element- v.~= as [31], [32]

I

ZM(k) = e7imuk(k M e 00,1, M — 1) (30)

where u is chosen from the Table 5.7.2-4 *~ 117]. The (k + 1)-th element of ¢y, is given by
M1
Cop1k+1 = L o 2 Z%{(m+L€n,) mod M}. (31)

m=

We take a cyclic shift n.s = 26 (sec ' 7, S ction-5]). To allow more RTs, we generate G = 150 codes.
Note that for a given root u, v ¢ ~an generate maximum |M /n.s| = 26 ZC preambles. Therefore we
need 5 different roots to gen~.. “e 150 codes. The roots are selected from [17, Table-5.7.2-4]) and codes
are generated using (31). . ~cr.l that S denotes the set of all active RA code indices at a particular
random access opportu .ity. dere S denotes the set of all detected code indices. The probability that
S = &S is denoted by P,. “he alse alarm probability gr, = 10~ in BIk-SIC algorithm. Two successive
interference cancel ation IU S algorithms are considered for performance comparison: (i) successive multi-
user detection (S*"UL,, 7 and (ii) successive ranging multi-user detection (SRMD) [2]. The simulations

are performed n an In el Core-i5 PC with 8 GB RAM.

A. Performu.cr evaluation at low CFO

The value of CFO of every RT is uniformly distributed in [—0.015,0.015]. Figure-1a shows the code

detection performance by different algorithms. The code detection performance of all algorithms are
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Fig. 2. IUS parameter estimation performances 2* low C.). (a) RMSE of timing offset estimation. (b) RMSE of channel power

estimation.

almost similar for low SNR va- ation i.e, [0 20] dB. However, the performance of SMUD and SRMD
drop quickly at relatively high SNR var.ation. In fact detecting users at large SNR variation is challenging.
This is due to the fact tha’ at ] .rger SNR variation environment, the eNodeB receives very high signal
energy from the RTs c] ser to 1.2 eNodeB whereas the received signal energy from far RTs are very
small. The high SNR K.. act - s interference sources to the low SNR RTs resulting in miss-detection of
low power RTs. ST {UD a. 1 SRMD generally try to detect every component of h, separately whereas
BIk-SIC tries to dete.* th~ whole energy of hy by applying the block likelihood testing approach. Hence,
BLK-SIC is le s affeci:d by the SNR variation. Figure-1b compares the computation time required by
different aloorithu.. At [0 30] dB environment with 4 RTs the computation time of Blk-SIC and SMUD
are 0.0428 a > 0.1325 sec respectively. Hence BIk-SIC is 3 times faster than SMUD. The time gap
decreases with increasing the number of RTs. For example, with 12 RTs BIk-SIC is 2 times faster than

SMUD. The computation time of SRMD is generally very high compared to other two algorithms.
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Fig. 3. Active code detection probability by different algorithms as a function o1 "FO mean. SNR variation [0 20] dB

Figure-2(a) shows the timing offset estimation pertc.mance by different algorithms. In general the
proposed method outperforms SMUD and SRMD v 1 "?MD performs the worst. As before, SMUD
and SRMD are affected considerably by the S! ™ vai. tion. At low SNR variations [0 20] and small
number RTs, BIk-SIC-CR and SMUD performs simii. rly, however SMUD tends to degrading performance
with increasing RTs. The RMSE of SMUD increas. - significantly for high SNR variation. In contrast, both
BIk-SIC-CR and BIk-SIC-L1 remain alm- . v affected with SNR variation whereas Blk-SIC-L1 performs
the best. Figure-2(b) shows the channe: ~ower estimation error. The performance of all algorithms are
almost similar where BIk-SIC exhit.ts r oderate RMSE. Interestingly the performance of the algorithms

are not much affected by the SN'< vai.. tic..

B. Performance at large C’ O

The value of CFO fo every u.er is drawn from a normal distribution with mean f - v and variance
10~* where b is the sigi. - ¢ ta} .ng value from the set {+1, —1} with equal probability. A larger value of
~ denotes larger CF O for « RT. SNR variation is kept to [0 20] dB. Figure-3 compares the code detection
performance of diftc. ~nt gorithms as a function of CFO. At low CFO, SMUD and SRMD perform
similarly to B k-SIC. Tlowever, their performance degrade quickly with increasing CFO. For example,
with K = 6 the ., values of SMUD are 0.995,0.44,0.255 and 0.185 for v = 0.01,0.05,0.1 and 0.15
respectively. " contrast, the P, value of BIk-SIC remains above 0.5 for v < 0.4.

The CFO estiination accuracy by two different versions of BIk-SIC is illustrated in Figure-4(a). As can

be seen the Blk-SIC-AD outperforms Blk-SIC-TLS. The performance gap of those algorithms are large at
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Fig. 4. (a) RMSE of CFO estimate. (b) RMSE of timing offset sti- iation as a function of CFO. SNR variation [0 20] dB

low CFO means, however they tends to close «~cn vu.er at higher CFO mean. As described in Section-
IV-A, the complexity of BIk-SIC-AD is little higher than BIk-SIC-TLS. Hence, we achieve the good
performance of Blk-SIC-AD forsake o little h gher computational load. Finally, Figure-4(b) illustrates
the effect of CFO on timing offset estima.. n accuracy. One important observation is that although
BIk-SIC-L1 outperforms all other . ~ rith"1s for moderate value of ~, i.e., v < 0.3, its performance
degrades for larger value of . 7. ~ region behind the fact is that at larger value of + the CFO estimation
accuracy by BIk-SIC-AD de~ es. As a result the estimation accuracy of hy is low. Consequently, the
CIR estimate hy by BIk-SIC 1.7 1n (29) generates many spurious peaks which results in inaccurate timing
offset estimation. The si aati ,n can be improved by applying a hypothesis testing (see [11, Section-III-H]

for a guideline).

VI. CONCLUSION

The dimens: »n of IL S problem for future wireless networks is expected to increase significantly. In this
work we provide « utrection to reduce the problem dimension efficiently. Section-III shows that every
block matrix ~. the IUS data model is ill-conditioned. Hence, CIR of every RT’s can be represented
compactly. We exploit the compact representation in Section-IV and develop the BIk-SIC algorithm

that can work in presence of CFO. We also provide a direction for estimating noise variance which is
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required for timing offset estimation. Finally, the advantage of using this data model is demonstrated
using simulation results.

There are several interesting open questions that remains to be answered. The .. mpact representation
is made possible by some results from Fourier analysis. This might be intei. ti".g explore further in
this direction in search of faster efficient algorithms. In addition, in [12] it was s. “wn that the codebook
itself impacts the detection-estimation performance significantly. Since thr resi .is , “esented herein makes
way for larger codebooks, it is interesting to find systematic ways to “~sigu “etter codebooks. Finally,
our approach to CFO estimation relies on a first order approximatic  in (7). It might be worthwhile to

investigate we could avoid making such approximations.

APPENDIX

Recall that the N x N DFT matrix F is given by
[l = exp{~i2n(k — 1,'1 — 1)/N}/VN.

and © consists of m th through to m + M — 1 th r¢ vs st e M x M identity matrix. The value of m
is specified in the LTE standard. Then

F:=0F = %, -1 , 1:Ny)-

We assume N large and N > M, whicl s a.. 0 true in practice. To study the singular value distribution

of F, consider G = F*F. The singular v. es .f F are the square roots of the eigenvalues of G. Now

1 o +M—1
Gre= N expfizn(k - £)(j —1)/N}.

Let us define m =m + (M —2)/2.

exp{i2n(k — {)m/N} "
N

1ol =
)

m+M-—1

> expfizn(k - £)(j —1—m)/N}. (32)

j=m
Next substitute x = j —1- m. When j =m thenx =m—1—m=—-1— (M —2)/2 = —M/2. When
j=m+M—-—.wmenz=M-1—(M—-2)/2=(2M —-2—-M+2)/2 = M/2. When M < N, we

can very accur. ‘ely ar proximate the sum in (32) as an integral:

: _ M/(2N)
G pe 1 2m(k=Om/N %/ exp{i2n(k — 0)x} dx
~M/(2N)
_ sin{m(k - £)M/N}
B (k- 1) ’

(33)
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Let us define

D = diag{ e 270 o-i2rm.l e—i2mm. (N1 —1) }
) )

)

Then
G ~D*QD
where

_ sin{n(k - ()M/N}
Qi = m(k — )

Since D is unitary, the eigenvalues of G and the eigenvalues of (, are a’ nost identical. However, it
is wellknown that about (M N;7)/N eigenvalues of Q are very clos w« 1, and the rest are very close
to 0 [33]. It should be noted that for practical values of N, M a~< N the above approximation is
highly accurate. For instance if we take N = 24576, M = 39 as p r LTE specification, and N; = 730
associated with a cell radius 2.1 km, then the absolute rela.. = durerence between the eigenvalues of G

and Q is below 4.6 x 1075,
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